10.ATA133
2001年7月,迈拓发布了新一代的硬盘规范,这个由整个存储设备工业联盟认可的规范,标准名称ATA133,或者是迈拓口中的FastDrive.
目前在ATA133硬盘和控制器之间最大理论传输速率是133MB/秒,在我们以前的测试中表明,磁盘控制器和硬盘之间的内部传输速率是非常不足的,单纯依靠增加外部传输速率对性能的提升并没有真正意义,对于现在的硬盘来说,可能UDMA66就足以满足他们的需要。当然,如果你把两个硬盘接在同一个接口时,66MB/秒或者100MB/秒的数据通道也可能不能确保两个硬盘平常连接时的需要。
ATA133规范给我们带来的重大改变是增加了扇区地址长度,从原来28bit增加到48bit,使得现在研究中的硬盘容量可以高达144Petabyte(1Petabyte= 1024Terabyte=1048576GB),这是一个难以想象的数字,不过谁又知道在快速发展的今天,我们会在哪一天需要用上这么大的硬盘呢?
11.ATA7
这项规格尚未存在,因为序列ATA(Serial ATA)的产品很快就将问世,所以ATA-7并未受到大部分厂商的支持。不过要是ATA-7将来正式获得制定,那将会支持UltraDMA模式6.
12.Serial ATA接口
新的Serial ATA(即串行ATA),是英特尔公司在2000年2月IDF(Intel Developer Forum,英特尔开发者论坛)首次提出的。并联合业内众多有影响的公司,如IBM.Dell.APT.Maxtor.Quantum(其硬盘部门已与 Maxtor公司合并)和Seagate公司,合作开发了取代并行ATA的新技术:Serial ATA(串行ATA).
2001年 8月,Seagate在IDF Fall 2001大会上宣布了Serial ATA 1.0标准,Serial ATA规范正式确立。在1.0版规范中规定的Serial ATA数据传输速度为150MB/s,比目前主流的并行ATA标准ATA/100高出50%,比最新的ATA/133还要高出约13%.而且随着未来后续版本的发展,其接口速率还可扩展到2X和4X(300MB/s和600MB/s).从其发展计划来看,未来Serial ATA的也将通过提升时钟频率来提高接口传输速率。串行ATA在系统复杂程度及拓展性方面,是并行ATA所无法比拟的。因为在Serial ATA标准中,实际只需要四个针脚就能够完成所有工作,第1针供电,第2针接地,第3针作为数据发送端,第4针充当数据接收端,由于Serial ATA使用这样的点对点传输协议,所以不存在主/从问题,并且每个驱动器是独享数据带宽。从此来看,它的优点是显而易见的。第一。用户不需要再为设置硬盘主从跳线器而苦恼;第二。由于串行 ATA采用点对点的传输模式,所以串行系统将不再受限于单通道只能连接两块硬盘,这对于想连接多硬盘的用户来说,无非是一大福音。
此外,Serial ATA的硬盘将不再有主从盘之分,这个新的规范是一种点对点协议,它将每个硬盘直接连接到了IDE控制器上,这样可以让IDE控制器对硬盘提供更好的控制能力,由于采用了点对点模式,Serial ATA将能非常方便地提升性能规范。我们可以预见:Serial ATA硬盘成为主流的日子已指日可待。
13.SCSI接口
SCSI(Small Computer System Interface)是一种与ATA完全不同的接口,它不是专门为硬盘设计的,而是一种总线型的系统接口,每个SCSI总线上可以连接包括SCSI控制卡在内的8个SCSI设备。早期PC机的BIOS不支持SCSI,各个厂商都按照自己对SCSI的理解来制造产品,造成了一个厂商生产的SCSI设备很难与其它厂商生产的SCSI控制卡共同工作,加上SCSI的生产成本比较高,因此没有像ATA接口那样迅速得到普及。SCSI接口的优势在于它支持多种设备,传输速率比ATA接口高,独立的总线使得SCSI设备的CPU占用率很低,所以SCSI更多地被用于服务器等高端应用场合。
ANSI分别于 1986年和1994年制订了SCSI-1和SCSI-2标准,一些厂商在这些标准的基础上开发了Fast SCSI、Ultra SCSI、Ultra2 SCSI(LVD)和Ultra160/m等事实上的标准,它们支持的传输速率如表2所示。与Ultra ATA相似,Ultra SCSI、Ultra2 SCSI和Ultra160/m也是处于SCSI-2和SCSI-3(仍然还未正式确定)两种标准之间的产物。昆腾、希捷、IBM等厂商都有自己的 SCSI硬盘系列产品,由于目标市场不同,这些SCSI硬盘的转速、缓存大小等指标要比同时期的IDE硬盘高得多。
■RAID详解
RAID的英文全称为:Redundant Array of Independent Disks.翻译成中文即为独立磁盘冗余阵列,或简称磁盘阵列。由美国加州大学在1987年开发成功。
RAID 的初衷主要是为大型服务器提供高端的存储功能和冗余的数据安全。我们可以这样来理解,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels).在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储性能要比单个硬盘高很多,而且在很多RAID模式中都有较为完备的相互校检/恢复的措施,甚至是直接相互的镜象备份,从而大大提高了 RAID系统的容错度,提高了系统的稳定冗余性,这也是Redundant一词由来。
不过,所有的RAID系统最大的优点则是“热交换”能力:用户可以取出一个存在缺陷的驱动器,并插入一个新的予以更换。对大多数类型的RAID来说,可以利用镜像或奇偶信息来从剩余的驱动器重建数据不必中断服务器或系统,就可以自动重建某个出现故障的磁盘上的数据。这一点,对服务器用户以及其他高要求的用户是至关重要的。
数据冗余的功能指的是:在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。
RAID 以前一直是SCSI领域独有的产品,因为它当时的技术与成本也限制了其在低端市场的发展。今天,随着RAID技术的不断成熟与厂商的不断努力,我们已经能够享受到相对成本低廉的多的IDE-RAID系统,虽然稳定与可靠性还不能与SCSI-RAID相比,但它相对于单个硬盘的性能优势对广大玩家是一个不小的诱惑。随着相关设备的拥有成本和使用成本不断下降,这项技术也已获得一般电脑用户的青睐。
RAID技术是一种工业标准,下面我们就一起来对各主要RAID级别做一个大致了解。